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We study the effects of an arbitrary external perturbation in the statistical properties of the S matrix of
quantum chaotic scattering systems in the limit of isolated resonances. We derive, using supersymmetry, an
exact nonperturbative expression for the parameter dependent autocorrelator of two S-matrix elements. Uni-
versality is obtained by appropriate rescaling of the physical parameters. We propose this universal function as

a signature of quantum chaos in open systems.
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Quantum chaotic scattering is the study of quantum trans-
port in systems whose underlying classical dynamics is cha-
otic. It has been recently the subject of intense theoretical
and experimental investigations [1]. This growing interest
has been partially motivated by a large number of applica-
tions in many branches of physics, such as microwave trans-
mission through irregular shaped cavities [2,3], ballistic
transport in semiconductor nanostructures [4], and resonant
reaction theory in molecular and nuclear physics [5].

A generic setup for a two-probe quantum chaotic scatter-
ing problem consists of an interaction region of finite volume
(the resonant cavity in a microwave experiment or the bal-
listic microstructure in mesoscopic physics) connected to
two reservoirs by free-propagation regions (waveguides for
microwaves or perfectly conducting leads for electron
waves) wherein asymptotic scattering channels can be de-
fined. The principal role of the interaction region is to pro-
vide a mechanism for “trapping” the incoming waves by
irregular boundary scattering thereby driving the system to a
regime where the ray optic limit (or classical dynamics) is
dominated by classical chaos.

There are two main theoretical descriptions of this prob-
lem: the semiclassical treatment [1] and the stochastic ap-
proach [6,7]. In the semiclassical description, averages are
calculated by representing the S matrix as a sum over all
classical trajectories connecting two given scattering chan-
nels [8]. Predictions are quantitatively accurate only for sys-
tems containing a large number of open channels. In the
stochastic approach the calculation of averages over actual
parameters of the physical system is replaced by averages
over an ensemble of random matrices (the Hamiltonian de-
scribing the interaction region or the S matrix of the whole
scattering problem). This procedure, which relies on ergod-
icity, can only be justified on time scales sufficiently large so
that chaotic scattering dominates and the incoming waves
form long-lived resonances in the interaction region.

The use of random matrix theory (RMT) in quantum
chaos is now quite widespread and has been largely moti-
vated by the fact that it provides a natural framework for
obtaining quantum signatures of chaotic behavior. A striking
example is the Wigner-Dyson statistics [9] for level spacing
distribution, which owing to its remarkable robustness and

universality can be considered the hallmark of quantum
chaos [10].
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In a very interesting recent series of papers [11-13] Si-
mons, Altshuler, Lee, and Szafer have extended RMT to de-
scribe the response of the spectra of disordered and quantum
chaotic systems to an external adiabatic perturbation that
causes the levels to disperse in disjoint manifolds exhibiting
many avoided crossings as the perturbation parameter varies.
It has been demonstrated that the n-point function for density
of states fluctuations becomes a universal function if the sys-
tem dependent parameters are removed by appropriate
rescalings. More generally, their results can be interpreted as
a signature of quantum chaos in closed systems.

For open systems, such as the quantum scattering setup
described above, the injection and emission of waves
through the contacts provides a mechanism for level broad-
ening and the above authors’ analysis does not apply. In this
case, the search for new quantum signatures of chaotic be-
havior is still open and is the main objective of the present
work.

More precisely, we study the effects of an external adia-
batic perturbation on the fluctuation pattern of elements of
the random S matrix describing quantum transport through a
chaotic cavity weakly coupled to external reservoirs. We
demonstrate, by explicit calculation of the ensemble average
using supersymmetry, that the two-point autocorrelator of
two S-matrix elements at different values of the external per-
turbation parameter U becomes a universal expression if U
is measured in units of the mean square gradient of the en-
ergy levels and if the decay width I' is measured in units of
the mean level spacing. We consider both systems with and
without time reversal symmetry (7 symmetry).

The technique used in the present work permits, in fact,
the complete solution of the problem for an arbitrary number
of channels and strength of the couplings to the external
reservoirs. The motivation to restrict our analysis to the par-
ticular case of weak coupling is twofold. First, the final ex-
pression for the two-point function simplifies enormously
and consequently the physical understanding of each compo-
nent becomes straightforward. Second, this regime is highly
nonperturbative and thus allows a deeper comprehension of
the limitations of a semiclassical treatment. The complete
analysis of the more general case is planned to be discussed
elsewhere [14].

A general two-probe quantum chaotic scattering problem
can be explicitly set up as follows. Let |¢S(E)) represent
scattering eigenfunctions inside the right (c=R) and left
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(c=L) free-propagation regions, in which a=1,2,...,A la-
bels the physical scattering channels. We denote the com-
plete set of orthonormal states characterizing the interaction
region by |u«) and thus the Hamiltonian of the whole system,
written in the basis {|YS(E)),|u)}, is given by [7]

Hp=2 f dE| Yo (E))E(Y(E)|+ 2 |u)(Hp(U)) u
ac 724

+3 [ anflm Wi uiE)|+e), m

pac

where Hg(U) represents the projection of the full Hamil-
tonian onto the interaction region. We assume that Hz(U)
can be written as [13] Hg(U)=Hg(0)+UVygz, where
H g(0) is a member of the Gaussian unitary ensemble (GUE)
for systems without 7 symmetry (8=2) and belongs to the
Gaussian orthogonal ensemble (GOE) for systems with T
symmetry (8=1), while Vg is a fixed traceless matrix with
the same symmetries as H g(0). Two important points should
be made here. Firstly, we are making the conjecture (follow-
ing Lewenkopf and Weidenmiiller [6]) that if our quantum
mechanical scattering problem has a classical counterpart
which is fully chaotic and with all parts of the phase space
equally accessible, then the matrix H 5(0) belongs to one of
the Gaussian ensembles of random matrices. Secondly, it is
natural to argue that the appropriate statistical assumption for
Vg is that it should also be a random matrix belonging to the
same ensemble as Hg(0). However, so long as we are only
interested in universal functions (functions with rescaled ar-
guments), it can be shown [13,15] that the choice of Vg as a
fixed traceless matrix leads to the same universal (after ap-
propriate rescaling) nonlinear o model. The third term in (1)
represents the coupling between the eigenstates of the inter-
action region and the scattering states in the free-propagation
region.

For any finite number N of bound states in the interaction
region (we shall later take N— at the end of the calcula-
tion) the kernel of the Lippmann-Schwinger equation is of
finite rank, thus the S matrix of the problem can be calcu-
lated algebraically [16] and after some straightforward sim-
plifications yields

S (U) =68, —2im D WD ™Y W @

mv

in which
D, =(E+i0%)8,,~[Hg(U)],,+im> W, W5,
ac

The absence of direct transitions between the physical chan-
nels enables us to work in a representation that satisfies the
requirement X “W:mWZ',,=N 5" 5,4x. The weak coupling
regime is obtained simply by requiring x ;<<A, where A is
the mean level spacing. Using Eq. (2) one can show that the
transmission probabilities defined as TS=1—|(S5)|* are
given by TS~4m2x$/A <1, which physically corresponds to
the limit of weakly overlapping levels, where transport is
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dominated by isolated resonances. The relevance of this re-
gime in the context of mesoscopic conductors has recently
been discussed by Prigodin, Efetov, and Iida [17] and by
Zirnbauer [18].

The simplest two-point function that contains sufficient
information about the perturbation driven fluctuations in the
elements of the S matrix of the problem is given by

xpU)= 2 (555 (w)SSs "(a+U)), (3)

abcec’

where the angular brackets denote the usual ensemble aver-
age. We remark that this correlation function has recently
been discussed by Doron, Smilansky, and Frenkel [3] using a
semiclassical approach. Their result, however, is not valid in
the weak coupling regime considered in the present work,
where pure quantum effects are dominant and classical dy-
namics is irrelevant.

As an example of a direct observation of a correlation
function similar to (3) but taken as a function of energy in
the absence of an external perturbation we mention the mi-
crowave experiment by Doron, Smilansky, and Frenkel [2].
Finally it is interesting to observe that for applications in
mesoscopic physics the average Landauer conductance is
simply given by G z= (ez/h)xﬁ(O).

We now state our results. Taking N and A to infinity such
that 7¢—0, but with T°=X, T, remaining finite [19],
Xg(U) can then be calculated exactly using the conventional
mapping [7,20] of RMT onto the zero-dimensional nonlinear
supersymmetric ¢ model. Integrating over the compact
manifold of the massless transverse modes by means of
Efetov’s parametrization [20] of the auxiliary supermatrix Q
fields, we find

T ‘o Um "
xs(U)=5 TTIg £ T (BCY|. (&)

where T=(1/T®+1/T*)"! is the total transmission coeffi-
cient across the interaction region, I'=A(TR+Tt)/(27) is
the total decay width for wave emission into the free-
propagation region, and C is the average gradient of level
velocities as defined in Refs. [11-13]. We remark that Eq.
(4) can also be derived from a microscopic model of a par-
ticle diffusing in a disordered potential by confining the
saddle point Lagrangian to the lowest harmonic in the spatial
dependence of the composite supermatrix fields using the
technique of Refs. [20,11]. Finally, the function /4(x,y) can
be written as

Io(x.y)= f(mdﬁu,;(pfﬂ@exp[—xgg(y—yzfﬂ@],

in which

o o 1
f dk:J’ d)\lj dX2J d)\3,
(1) — 1 1 -1
* 1
[ e o i
2y — 1 -1



50 PARAMETRIC S-MATRIX FLUCTUATIONS IN THE QUANTUM.. ..

I(1y)

GOE . GUE

05 - .

FIG. 1. 1 4(x,y) for x=1 as a function of y for =1 (GOE) and
B=2 (GUE) as indicated.
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Observe that xz(U) becomes a universal function after the
rescalings [11-13] T'—Al' and U —-U, U, where
U.=C, '. Equation (4) is the complete solutlon of the
problem and can be interpreted as a signature of quantum
chaos in open systems in the weak coupling regime.

The function I4(x,y) is displayed in Fig. 1 for 8=1 and
2. Its typical Lorentzian-like tails reflect the long range na-
ture of the universal logarithmic eigenvalue repulsion of
RMT. One can see two interesting limits: (i) U>U, and (ii)
U< U.,.

(i) In this case the levels decorrelate asymptotically and
diagrammatic perturbation theory applies. Alternatively, we
can calculate Ig(x,y) asymptotically for y>1 to find
Ig(x,y)~ 1/y2. Thus xp(U) acquires, after rescaling, the
simple universal form

A

T
= or
Xp 702

Us1. Q)
Diagrammatically, the main contributions to xz(U) for sys-
tems with orthogonal symmetry (8=1) come from cooperon
and diffuson modes of diffusion, while for systems with uni-
tary symmetry (8=2) the cooperon degrees of freedom are
destroyed by the breaking of 7 symmetry. Cooperon and
diffuson are defined in the context of diagrammatic calcula-
tions as a sum of classes of polarization diagrams which
contributes to the average of the product of two Green func-
tions. Therefore, when we cross over from the orthogonal to
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the unitary ensemble there is a suppression of correlations in
Xp(U) by a universal factor 2.

(ii) This case is very interesting since it corresponds to a
regime where perturbation theory and semiclassical approach
break down. Using our exact result, Eq. (4), for x4z(U) we
find

B U\? .
xp(U)=2T 1—7;- U hg(y)+O(U/U)Y)|, (6)

in which y==T/A and

(D =hy() 4~ + we_‘d(d Sinhy)
= —_— *t-—— s
1Y 2lY y Lt dy vy

where
—e 27

1
hy(y)= 1+—272.

The physical meaning of the first term in Eq. (6) becomes
more transparent if we consider its application to ballistic
mesoscopic nanostructures and use the definition of 7 and
the Landauer formula for the average conductance to write

e2 TRTL
‘h TR+TL -

- e2 e2

This expression coincides with the average conductance of a
quantum dot weakly coupled to external leads obtained in
Ref. [17] using a different method. It demonstrates that trans-
port in this regime is completely dominated by tunneling at
the junctions and therefore the average Landauer conduc-
tance is just the series addition of the contact conductance
associated with the couplings between the quantum dot and
the bulk leads. Note that G g is independent of the size L of
the dot in sharp contrast with Ohm’s law, where the diffusive
process inside the sample dominates and G p decays linearly
with L. It is interesting to observe how G p changes when the
coupling to the leads is strengthened driving the system to
the strongly absorbing regime. In this case the decay width
I', at each channel becomes comparable to the mean level
spacing and thus TR=TL=A (in the symmetric case). Note
that this regime corresponds to the limit of a large number of
open channels and thus it can be treated by both conven-
tional perturbation theory and semiclassical analysis. For
systems with unitary symmetry the total transmission coeffi-
cient becomes equal to the total reflection coefficient
T=R=A/2, as a result of classical ergodic exploration of
the boundaries of the cavity and Eq. (7) becomes
G,=(e¥h)A. As discussed in Ref. [21] the presence of
quantum interference in systems with orthogonal symmetry
leads to a small correction due to weak localization and we
find G;=G,+ 6G.

Finally, the second term in Eq. (6) determines the curva-
ture Kg(y) of xg(U) at U=0. The functions h;(7y) and
hy(y) arise ultimately from level repulsion and eigenvector
rotations induced by the external perturbation. One can
verify by direct calculation that K;(y)>K,(y) for all
v=>0.

In the theory of Simons, Altshuler, Lee, and Szafer
[11-13] of closed chaotic systems in the presence of an ex-
ternal perturbation a remarkable web of relations has been
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found [13] between the nonlinear o model of diffusion and
many other problems in theoretical physics, such as continu-
ous matrix models, Dyson’s Brownian motion model, Suth-
erland quantum Hamiltonian, and Pechukas gas. In the light
of our result, we believe that similar relations exist for open
systems. An interesting line of research, which we leave for
the future, would be to build a Brownian motion model (or
equivalently a quantum Hamiltonian) whose solution would
describe the statistics of the elements of the S matrix in the
presence of an external perturbation.

In conclusion, we have studied the effects of an adiabatic
external perturbation on the correlations between different
elements of the S matrix describing scattering in an open
quantum chaotic system weakly coupled to external reser-
voirs by two free-propagating pipes. We demonstrate that the
parameter dependent autocorrelator of two S-matrix ele-
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ments becomes a universal expression if the perturbation pa-
rameter U is measured in units of the mean square gradient
of the energy levels and if the decay width I" is measured in
units of the mean level spacing. We have proposed this uni-
versal function as a signature of quantum chaos in open sys-
tems in the weak coupling regime. We believe that our pre-
dictions should in principle be observable in a microwave-
scattering experiment, where both amplitude and phase of
the scattered wave can be accurately measured. The variable
U could, for instance, parametrize changes in the geometry
of the chaotic cavity.
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